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Abstract
Systems dynamics of North arctic cod is a non-linear time varying dynamic process dependent on the 
ecology and the landings systems. In this dynamic system it is detected a dynamic process closely 
correlated to temperature cycles of 3*18.6=55.8 years, 18.6 years and 18.6/3=6.2 years. The temperature 
cycles is related to changes in the earth nutation and thus expected to be deterministic. The 6.2 year 
temperature cycle seems to have an important influence of cod recruitment, growth rate and landings. The 
temperature cycle of 18.6 years and 55.8 years seems to influence the growth rate and the maximum 
biomass. A delay in decision a level of landing, seems to introduce an instability in the biomass. In the 
paper it is suggested a control strategy to control the dynamics introduces by the temperature cycles. 
 
The deterministic dynamic properties of recruitment opens for a simplification of the dynamic modelling 
and forecasting of North arctic cod. In the paper it is identified a systems dynamics models that may be 
used for forecasting future biomass. 
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1  INTRODUCTION 
 

orth Arctic cod is one of the largest 
stock of cod in the world. During 
centuries this stock has been of most 
importance of the economic growth in 

the western part of Norway. People living by 
fishing has always known that the stock of cod 
has dynamic properties. Some year there is a 
richness of cod and some years there are less. 
Knowledge of dynamics in fishery resources 
thus always has been of most importance. 
Periodical variations in the biomass and the 
fisheries of North arctic cod has been studied 

by researchers for many years. Among them 
Otterstad in 1942 (6) and Wyatt in 1994 (7).  
 
In 1994 a life cycle analysis of a Norwegian 
fishing trawler was conducted (3). By chance, 
it was found that the time series of the 
quantities for North Atlantic cod has a 6-7 
years cycle in the Fourier amplitude spectrum. 
This cycle was found in the fry abundance and 
even in the quota quantities of cod. Than we 
raised the hypothesis of a stationary 
temperature cycles in the Barents Sea. 
 
This paper is based on official data (4) and the 
theory of a stationary temperature cycles related 
to the Earth nutation of 18.6 years (9). In this 

 N
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paper we have found that a stationary a cycle of 
18.6/3=6.2 years highly influences the 
recruitment of cod and the cycles of 18.6 years 
and 3*18.6=55.8 years cycle influences the 
growth and the maximum biomass. 
 
System theory 

Cod biomass Food biomassLandings

Figure 1 Dynamic system 

A system is a set of organisations serving a 
common purpose. A general system S(t) may be 
expressed by 
 
S t A t X t( ) { ( ), ( )}=  
where X(t) is a set of organisations and A(t) is a 
set of relations between the organisations. In 
this case the set of organisations X(t) is the cod 
biomass system, the cod food system and the 
landings system. These systems are related by 
the time varying relations A(t). This means that 
the systems dynamics of cod is a dynamic 
process depending on the dynamics inside the 
organisations X(t) and the dynamic relations 
A(t) between the organisations. 
 
According to the theory of systems dynamics 
this is a time variant non-linear dynamic system, 
and in this case there is a strong binding 
between the bio system partners. A such 
dynamic system may be deterministic by nature, 
but even if we have online access to the data of 
this system, the complex time varying 
properties introduces tremendous difficulties in 
predicting future development of the biomass. 
 
There is however a possibility of simplifying 
this complex dynamic system. This possibility 
is based on there is a dominant force in the 
system that synchronises the dynamics of the 
total system. This force may be a stationary 
temperature cycle.  
 
 
2   SYSTEM DYNAMICS 
 
2.1 Recruit dynamics 
The recruitment of cod has an important impact 
on the biomass. Than understanding the recruit 
dynamic is of most importance  to understand 
the biomass dynamics. It has been known for 
years that there is a relation between the 
temperature and the recruitment (5). We will 
therefore study this relation more closely. 

 
Temperature influences 

 
Figure 2 Temperature in the Barents Sea 

The temperature in a volume of the Barents Sea 
has been measured each month since 1900 (1). 
This figure shows a 12 year moving average of 
the temperature time series. 
 
The stationary temperature cycles is estimated 
(9) to be 

Ut nT nT Ti1 3 9 0 4 2
3 18 6

336( ) . . sin(
.

)= + ⋅
⋅
⋅

⋅ +
π  

Ut nT nT Ti2 39 0 6 2
18 6

9 6( ) . . sin(
.

. )= + ⋅
⋅

⋅ +
π  

Ut nT nT T3 3 9 0 4 3 2
18 6

12( ) . . sin(
.

)= + ⋅
⋅ ⋅

⋅ +
π  

where T is the sampling time of one month and 
n is the number of months from the year 1900. 
These cycles has a period of 6.2, 18.6 and 55.8 
years. Since these cycles are correlated to a 18.6 
year cycle of the earth nutation, the cycles are 
stationary and deterministic. 
 
We may now study the relations between the 
dynamic biomass and the stationary temperature 
cycles. Figure 5 shows the time series yn3(nT) 
of the number of 3 year North Arctic Cod since 
1946 (4). The estimated mean value is 
 

[ ]yn E yn nT3 3= ( ) = 632 mill cod 
This time series shows changes from 2-18 mill 
cod pr year. These changes may be investigated 
more closely by the autocorrelation and the 
power density spectre of the time series. 
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Figure 3 Autocorrelation of cod fry 

The discrete autocorrelation function of the time 
series is computed by the estimate 
 
R mT E yn nT yn nT mTyy ( ) [ ( ) ( )= ⋅ +3 3 ]  

where T is the time interval of one year and m is 
the number of years. 
 
The rapid falling autocorrelation indicates that 
the number of 3 year cod is not a stable process. 
The peaks in interval of about 6 years indicates 
a stationary cycle of about 6 years in the time 
series. 
 

 
Figure 4 Power density spectrum of 3 year class 

The auto power density spectre indicates 
stationary properties of the autocorrelation 
function. This spectre is computed by the 
inverse discrete Fourier transform 
 

S k R mT eyy yy
n

N
jkmT N( ) ( ) /= ⋅

=

−
−∑

0

1

 

Figure 4 is the power density spectre windowed 
by 32 points. The maximum cycle is at 
 

peak =
32
5
≈ 6 years 

This is the same as at the temperature cycle of 
6.2 years 
 

 
Figure 5 Number of 3 year cod and 18.6 year cycle  

A time series of North arctic cod since 1946 is 
too short to estimate a cycle of 18.6 years. 
Figure 5 is a visual presentation of the 18.6 
years cycle and the 3 year cod series. In this 
case the temperature cycle is computed from the 
year 1946. The figure shows that the number of 
3 year cod has a low frequent component which 
is related in frequency and phase to the more 
low frequency temperature cycle of 18.6 year. 
 
This analysis indicates that there is a close 
relation between the recruitment of North arctic 
cod and the temperature cycles of  6.2 years and 
18.6 years. The 6.2 year cycle has the most 
influences an introduces the high peaks in 
recruitment. The 18.6 years cycle introduces an 
cycle at about the half amplitude. 
 
Production rate 

 
Figure 6 Biomes of 8+ year spawn cod 

This figure is the time series of the biomass of 
cod from 1946 (4). In this case the of cod 
biomass is defined to be 8 years or more and 
characterised by the time series y8+(nT). The 
mean biomass of cod is 

[ ]y E y nT8 8+ += ( ) = 600.000 tons 
or about 25 % of the total mean biomass.  
 

 



AALESUND COLLEGE                                                                                                      4 

 
Figure 7 Number of 1 year cod 

The numbers of cod at the 3 years age is known 
(4). The biomass of 1 year cod may be 
computed by the backward prediction 
 

yn nT
yn nT T

Mi
i( )

( )
( )

=
+

−
+1

1
 

where M is the mean descrete mortality 
computed by the relation 
 
e MF− = −( )1  
and F is the continuos mortality rate. The 
mortality is an uncertain variable and often 
estimated to be F=0.2 (4). In this example the 
mortality of cod is selected to be M=0.2 or 
F=0.2231. Then the number of cod at one year 
cod is estimated to be as shown on figure 9. In 
this case the mean numbers of cod is 
 

[yn E yn nT1 1= ( )] = 986 mil cod 
The peeks on the estimated number of one year 
cod has the same frequency and phase as the 6.2 
year temperature cycle. 
 

 
Figure 8 Production rate 

The production rate of cod may be defined as 
the relation between the number of one year cod 
and the biomass of cod. This rate may be 
computed by 
 

p nT
yn nT
y nT

( )
( )
( )

=
+

1

8

 

where y8+(nT) is the known biomass of cod and 
yn1(nT) is the backward estimated number of 
one year cod. The result is displayed on figure 8 
and indicates a cyclic production rate. The mean 
production rate is 
 

[ ]p E p nT= ( ) =2500 cod/tons biomass 
 

 
Figure 9 Autocorrelation of recruit rate 

This figure is the autocorrelation of the 
production rate p(nT). The autocorrelation 
indicates there is a dominant cycle of about 6 
years in the production rate. These estimates 
tells us the number of one year cod and the 
production rate is correlated to the 6.2 year 
cycle. 
 

 
Figure 10 Exponential temperature growth rate Kt 

Since each part in food chain is temperature 
dependent. We may expect an exponentially 
temperature dependent recruitment. A such 
relation is the model 
 
p nT p Kt nT( ) exp( ( ))= ⋅  

where Kt is an exponential relation and p  is 
the mean production rate. The exponential 
relation may be estimated as a time series 
 

( )Kt nT p nT p( ) ln ( ) /=  
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Figure 10 shows that this exponential factor Kt 
is changing periodically between +1 and -1.  
 

 
Figure 11 Autocorrelation of exponent 

Figure 11 shows the autocorrelation of the 
exponential factor Kt. The autocorrelation 
shows that Kt(nT) has a dominant periodic 
cycle of about 6 years. This tells us that the 
exponential factor Kt is related to the 6 year 
temperature cycle. The time series is to short to 
estimate cycles of 18.6 and 55.6 years. Than we 
may modulate the production rate as 
 
p nT p Kt nT p Ukt nT( ) exp( ( )) exp( ( )= ⋅ ≈ ⋅ )

where p  is the mean production rate and 
Ukt(nT) is the estimated stationary temperature 
cycles of 6.2, 18.6 and 55.8 years. 
 
Now we know that the exponential factor Kt is 
direct related to the stationary temperature 
cycles. This is of most importance because the 
changes of these cycles is expected to be 
deterministic (10). The next is identifying the 
periodic temperature amplitude relation.  
 

 
Figure 12 Measured exponent Kt and temperature 
cycle Ukt3

By adjusting the amplitude of the 6.2 year 
cycle, we found the optimal cyclic exponential 
temperature parameters 
 

Ukt nT nT T3 12 3 2
18 6

12( ) . sin(
.

)= ⋅
⋅ ⋅

⋅ +
π  

where n = 1,2,3…. From the year 1900. 

The correlation between these cycles are 
surprisingly good. The exceptions are the years 
1950 and 1956 when the biomass was at a high 
level. 
 

 
Figure 13 Estimated 1 year cod form the 3 cod  and 
from the biomass 

Knowing the estimated production rate, we may 
now estimate the number of one year cod from 
the estimated production rate model 
 
$ ( ) ( ) exp( ( ))yn nT y nT p Ukt nT1 8= ⋅ ⋅+  

Figure 13 shows the estimated number of one 
years cod in two ways. The first is estimated 
backwards from the 3 year biomass y3(nT) and 
the second is predicted from the recruitment 
model. The figure shows a good relation 
between the two estimates.  
 

 
Figure 14 measured and estimated production 

To test the sensitivity of the temperature cycles, 
the estimated production of one year cod may 
be modulated by the simplified model 
 
$ ( ) exp( ( ))yn nT y p Ukt nT1 8= ⋅ ⋅+  where 

[ ]y E y nT8 8+ += ( ) =590.000 tons 

[ ]p E p nT= =( ) 1660 fry/ton spawn cod 

Ukt nT nT( ) . . sin( )= − + ⋅ +0 38 10 3 3ω φ  
In this case only the 6.2 year cycle is used in the 
temperature parameter Ukt(nT). The figure 
shows there are a surprisingly close relations 
between the estimates by the production and 
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backward prediction from 3 year cod. This time 
there are a phase shift error in 1950 and in 
1987.  
 
The model may easily be tuned some more. The 
phase error is related to a known phase shift in 
temperature cycle (10) which is not adjusted in 
this estimate. If we introduces the temperature 
18.6 year cycle in the model, the amplitude 
error will be further reduced. 
 
These estimates indicates that the recruitment is 
exponentially dependent on the temperature 
cycle and less dependent on the biomass. If this 
estimate and the hypothesis of stationary 
temperature cycles is confirmed, it opens for a 
deterministic prediction of future recruitment of 
North arctic cod.  
 
2.2 Biomass Dynamics 
The dynamics of the total biomass may be 
modulated by knowledge of the mean 
recruitment, individual growth in weight, 
landings and mortality. 
 
Individual growth 

 Figure 15 Mean individual growth in weight 

The individual growth of North arctic cod is 
well documented (2), (4). Using these data, the 
mean growth in weight of a cod fish may be 
modulated as 
 
x nT T x nT ui i+ + = +1 ( ) ( ) i  
where xi is the biomass at the age i and ui is the 
incremental growth at the same age.  
 
The mean growth is 
 

u E
x x

i
i i=

+⎡
⎣⎢

⎤
⎦⎥

max min

2
= 1.04 kg/year 

and the mean weight in a life time of 30 year is 
 

[ ]x E xi=  =14 kg 

Figure 15 shows the weight growth of one fish. 
This model indicates a deterministic view of 
growth where the growth is small the first years 
and than there is a steady growth.  
 
The growth factor 
The growth factor is the mean growth form one 
year to the next. The estimated growth factor at 
each age is 
 

a
x
xi
i

i

= +1  

Using the growth factor, we may describe the 
life cycle incremental growth of one fish as 
 
x nT T a x nTi i+ i+ = ⋅1 ( ) ( )  
In this model the mean growth from 9 to 30 
years is expected to be the same as from 7 to 8 
year. This indicates that the mean growth in 
weight is constant, and the relative weight is 
decreasing. In this case the mean growth rate is: 
 

[ ]a E ai= = 1.33 
This means in an uniform distributed biomass, 
the maximum mean growth of biomass is about 
33 % pr year. The growth of one cod has 
probably an S-shape. The mean growth of 1.33 
than is probably a maximum estimate. 
 
Temperature dependent growth 
If we look at the data of mean growth (2), the 
growth has a maximum at the year 1990 a 
minimum at the year 1987. When subtracting 
the delay of growth, there is a phase relation 
between the growth of cod and the 6.2 year 
temperature cycle. This indicates a correlation 
between the growth and the stationary 
temperature cycle of 6.2 years. Using a priori 
information on the temperature cycle, we may 
estimate a temperature dependent growth that is 
related to the temperature cycle of 6.2 years. 
This means that the this temperature cycle 
influences the growth rate of the biomass in 
cycles of 6.2 years. 
 
Biomass dynamics 
The dynamics of the biomass is dependent on 
the individual growth rate, mortality and 
landings. To understand more about the 
biomass dynamics, we may first study what will 
be the maximum biomass if the landings are 
zero. 
 
Knowing the mean number of 3 year cod and 
the mean mortality rate, we may compute the 
mean number of each age by 
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n ixn M xn a xni i+ = − ⋅ = ⋅1 1( )  
where the age i = 1,2,3… 30. And knowing the 
mean numbers of cod at each year class and the 
mean weight at each year class, we may now 
compute the mean biomass at each year class by 
 
x mv xi i+ = ⋅1 ni

i

 
where mvi is the mean biomass on a fish at the 
age i. We may now compute the maximum 
growth of the biomass in a cod life span when 
there are no landings. This accumulated 
biomass may be computed by 
 
xb xb xi i+ = +1  
where xbi is the accumulated biomass at the age 
i and xi is the biomass at the year class i. From 
known sources (4) the mean number of 3 year 
cod since 1946 is estimated be 632 mill cod per 
year and the mean mortality is expected to be 
F=0.2. The mean accumulated biomass, without 
landing, than is estimated to be 22.000.000 tons. 
 

 
Figure 16 Total biomass y3+(nT) 

This figure shows the development of the total 
biomass the last 50 years (4). In 1945 the 
estimated biomass was about 4.000.000 ton. 
The time period 1940-50 had optimum 
conditions cording to the 55 years temperature 
cycle and there was less landing the years 1940-
45. If this growth model is right, there must be a 
mush more biomass in the Barents Sea or there 
must be much higher mortality. 
 
If the years 1940-50 had optimum conditions, a 
50 % higher than the estimated 4.000.000 tons 
seems to be more realistic. This means the 
maximum biomass is about 6.000.000 tons on 
optimum conditions. If this is correct, the 
mortality must be higher than F=0.2. 
 
Adjusted mortality 

 
Figure 17 Biomass distribution when F=0.31 

This figure is an estimate of the biomass 
distribution when the mortality F=0.31 and 
M=0.27. In this case the peak of the biomass is 
at the 7 years class. 
 

 
Figure 18 The growth of total biomass when 
mortality rate F=0.31 

Figure 18 shows the growth of the total biomass 
when the discrete mortality rate M=0.27. In this 
case the biomass is growing to 6.000.000 tons 
and most rapidly between 500.000 and 
4.000.000 tons.  

 
Figure 19 Biomass growth rate 

Knowing the growth of the total biomass xbi 
and the mortality rate M, we may now compute 
the biomass growth rate by 
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ab
xb
xbi

i

i

= +1  

The result on figure 19 shows that the growth 
rate is decreasing exponentially. This means the 
biomass is an highly non-linear system. In the 
past 50 years, the biomass has changed between 
1.000.000 and 4.000.000 tons. In this area the 
growth rate is changing between 
 
ab1 4− =  1.5 and 1.2 
This means the biomass has a growth of 50% 
when the biomass is 1.000.000 tons and 20 % 
when it is 4.000.000 tons. The mean growth rate 
is: ab = 13.  or about 30 % a year. 
 
3.3 Landings dynamics 
 

Landing
system

Cod biomass
system

Marked
system

 
Figure 20 Landing system 

The landings system regulates the quota of cod. 
This system is related to its context. The 
dynamics of this system is on one side related to 
the dynamics and the binding to a marked 
system. On the other side it is related to the 
dynamics and the binding to the cod biomass 
system. Thus the marked system, the landing 
system and the cod biomass system is a part of a 
common value chain system where each sub 
system will influence the dynamics of the other. 
For better understanding the total dynamics, we 
will now study some fundamental properties of 
the landing dynamics. 

 
Figure 21 Landings of cod 

This figure shows landings of cod since 1946. 
The mean landing is 
 

[u E u nT= ( )]  = 677.000 tons pr year 

This is 28 % of the biomass. If we use the 
landings as an input to the biomass model, we 
will have the state space difference equation 
 
x nT T A nT x nT B u nT C v nT( ) ( ) ( ) ( ) ( )+ = ⋅ + ⋅ + ⋅
y nT D x nT w nT( ) ( ) ( )= ⋅ +  

where u(nT) is the biomass of landings and B is 
a (m x m) matrix that distributes the landing on 
each yeas class. The state vector v(nT) is the 
loss of biomass from an unknown source. 
 

 
Figure 22 The landings rate 

A landings rate is an policy index that indicates 
how much of the biomass of cod that are 
landings to the marked. The landings ratio may 
be defined as 
 

L nT u nT
y nT

( ) ( )
( )

=
+3

 

The landings rate function is shown on figure 
22. The mean landings rate is 
 

[ ]L E L nT= ( )  = 0.3 or 30 %  
Earlier in this paper we found the mean growth 
was about 30 % and it was changing between 
20 % and 50 %. This indicates the that if the 
mortality rate F=0.31, as indicated in this paper, 
the landing rate is the main force in controlling 
the dynamics of the biomass and the landings 
rate is at a critical level. The non-linear 
properties of the growth rate will force the 
biomass in the direction of cod at smaller ages. 
In the next years the Barents Sea is expected to 
be cooled down by the 55.8 year cycle (10). 
This will influence the biomass growth rate. If 
the landings rate still is 0.3, the biomass will be 
more reduced. 
 
A mean landing ratio of 0.3 tells us that the 
landing will have much impact on the dynamics 
of the cod biomass. Understanding the 
dynamics of the landings rate is of most 
importance for understanding the dynamics of 
the cod biomass.  
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The landings rate and the analysis of the 
landings rate indicates that there has been a 
steady growth of landings ratio from 1965 to 
1985. There was a change in the policy in 1985-
90 when the biomass collapsed. Since than the 
landings rate has been growing to the levels of 
the 1970-80. 
 

 
Figure 23 Autocorrelation of landings ratio 

The autocorrelation function of the landings rate 
L(nT) is shown on figure 25. The slow decline 
of autocorrelation indicates a steady landing 
policy.  
 
An analysis of the landings function u(nT) 
indicates that the landings also has a cycle of 
about 6 years, but compared to the biomass 
function y3+(nT), the landings has a phase delay 
of 3 years. The effect of this phase delay is 
introduction of instabilities in the biomass. This 
instability will lead to a minimum quota of 
landing when the biomass has a maximum and a 
maximum landing quota when the biomass has 
a minimum level. 
 
Systems dynamics control 
Instabilities in the biomass may be reduced and 
controlled to a chosen level. Knowing the 
dynamics of the biomass and the recruitment, 
the biomass may be controlled to a wanted level 
by feedback control and a feed forward control. 
A discrete representation of the biomass may be 
modelled by 
 
X nT T A nT X nT B U nT V nT( ) ( ) ( ) ( ) ( )+ = ⋅ − ⋅ − ⋅
Y nT D X nT W nT( ) ( ) ( )= ⋅ +  
where X(nT) is the biomass vector for each age, 
A(nT) the growth matrix, U(nT) the landings 
vector, V(nT) is mortality from an unknown 
source, Y(nT) is the Kalman-estimated vector of 
biomass and W(nT) is an uncertainty in the 
measurement.  
 
Low frequent dynamics may be controlled by 
the feedback control 
 

U nT R nT Y nT K( ) ( ( ) ( ))= − ⋅  
where R(nT) is the wanted biomass level and K 
is the control strategy. A well known control 
strategy is a proportional and an integration 
property. 
 
If the biomass is controlled to a low level, the 
recruitment from 3 year class and the growth of 
the biomass in a year will be of importance. We 
may than introduce a feed forward control 
strategy.  
 
U nT y nT dX nTf ( ) ( ) ( )= +3  

where y3(nT) is the estimated mean biomass of 
3 year cod and dX(nT) is the estimated growth 
in a year. The estimated landing by feedback 
and feed forward control will than be 
 
U nT R nT Y nT K U nTf( ) ( ( ) ( )) ( )= − ⋅ +  

This control will suppress dynamic in the 
biomass that is introduced by the high frequent 
cycle of 6.2 years and the more low frequent 
cycles of 18.6 and 55.8 years. 
 
2.4 Uncertainty 
 
Analysing the uncertainty we will know more 
of the quality of the data and models in this 
paper. The system dynamics of the each age in 
the total bio system may be modulated by the 
state space equation 
 
X nT T A nT X nT B U nT( ) ( ) ( ) ( )+ = ⋅ + ⋅  
Y nT D X nT W nT( ) ( ) ( )= ⋅ +  
where X(nT) is a vector of biomasses A(nT) is 
the matrix that regulates the growth, U(nT) the 
landings and W(nT) the uncertainty in the 
measured biomass.  
 
We will now analyse the uncertainty in 
measuring the biomass. If the mortality is 
incorporated in the growth model, we may now 
use this dynamic biomass model based on 
known data (4). 
 
x nT T ab x nT u nT3 3+ ++ = ⋅ −( ) ( ) ( )  
y nT T x nT w nT3 3+ ++ = +( ) ( ) ( )  

Than the uncertainty w(nT) may than be 
formulated as 
 
w nT y nT T ab y nT u nT( ) ( ) ( ) ( )= + − ⋅ ++ +3 3  
where u(nT) is the landings and ab is the 
estimated mean growth rate and mortality 
estimated in this paper. 
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Figure 24 Estimated uncertainty of mortality and 
measurement 

The estimated uncertainty function w(nT) is 
shown on figure 24. The figure shows that the 
uncertainty has some positive and negative 
values. Positive values indicates there must be 
more biomass in the system than expected and 
negative there is less. The mean value of 
uncertainty is 
 

[w E w nT= ( )]  = -90.000 tons 
This is only 3.7 % of the total biomass. The 
estimated error is mostly positive when the 
biomass has a low value and negative when it is 
high. In this estimate the growth rate is not 
adjusted for changes in the biomass, if this had 
been done, the uncertainty w(nT) should be 
even lower. 
 
Estimation of uncertainty is test of the quality of 
measured data (4) and the estimated parameters 
of growth rate and discrete mortality in this 
paper. In this estimate the mortality rate was 
F=0.31. If the right mortality is F=0.2, there 
should be mush more biomass than measured. 
 
 
 

 
Figure 25 Autocorrelation of the uncertainty 

This is the autocorrelation function of the 
uncertainty function w(nT). It shows that the 
autocorrelation function is falling rapidly to 
about 0.3 and than there is a peak at about 6 
years repeating in periods of about 6 years. This 

indicates there are much noise in the data as 
expected. This confirms the estimates of data 
and parameters in this paper. 
 
 
3  CONCLUTION 
 
Systems dynamics of North arctic cod is a non-
linear time varying dynamic process dependent 
on the ecology and the landings systems. In this 
dynamic system it is detected a dynamic process 
closely correlated to temperature cycles of 
3*18.6=55.8 years, 18.6 years and 18.6/3=6.2 
years. The temperature cycles is related to 
changes in the earth nutation and thus expected 
to be deterministic. The 6.2 year temperature 
cycle seems to have an important influence of 
cod recruitment, growth rate and landings. The 
temperature cycle of 18.6 years and 55.8 years 
seems to influence the growth rate and the 
maximum biomass. A delay in decision a level 
of landing, seems to introduce an instability in 
the biomass. In the paper it is suggested a 
control strategy to control the dynamics 
introduces by the temperature cycles. 
 
The deterministic dynamic properties of 
recruitment opens for a simplification of the 
dynamic modelling and forecasting of North 
arctic cod. In the paper it is identified a systems 
dynamics models that may be used for 
forecasting future biomass. 
 

 



AALESUND COLLEGE                                                                                                      11 

 

 
References 
1. Bochkov, Y.A: Water temperature in the 0-

200 m layer in the Kola-Meridian in the 
Barents Sea, 1900-1981. Sb. Nauchn. Trud. 
PINRO, Murmansk, 46: 113-122 (in 
Russian). 

2. Havforskningsinstituttet: Ressursoversikt 
1995. Bergen. 

3. Helgessen Ø, Yndestad H, Walde P, m.fl.: 
Livssyklusanalyse for tråler. 1994 HIÅ. 
Ålesund. 

4. ICES: Report of the arctic fisheries working 
group. ICES Headquarters. Copenhagen. 
Denmark. August 1995 

5. Loeng H, Blindhein J, Ådlandsvik B, 
Ottersen G: Climatic variability in the 
Norwegian Barents Seas. ICES mar. Sci. 
Symp.. 195: 52-61. 1962 

6. Ottestad, Per: On Periodical Variations i the 
Yield of the Great Fisheries and the 
Possibility of establishing Yield Prognoses. 
Fiskeridirektoratets skrifter. 1942. Bergen 

7. Wyatt T, Cyrrie R G, Saborido-Rey: 
Deterministic signals i Norwegian cod 
records. ICES mar. Sci. Symp., 198: 49-55. 
1994 

8. Yndestad H: Sammenheng mellom 
temperatur og yngel for norsk arktisk torsk. 
HIÅ/AEA/F-95/02. Ålesund. 1995. 

9. Yndestad H: Stasjonære temperatursykluser 
i Barentshavet. Årsakenes årsak. 
HIÅ/AEA/F-95/01. Ålesund. 1995 

10. Yndestad H: Stationary temperature cycles 
in the Barents Sea. The cause of causes. 
ICES. Annual Science Conference. Iceland. 
Sept. 1996 

 


