FedCSIS 2012: Wroclaw, Poland 9-12 Sept., 2012

Multi-Angents in Virtual Regional landscapes

Prof. Harald Yndestad

The More Region in Norway

The Virtual Møre

The goal

- 1. Simulation and visualization and 3D maps as a research tool
- 2. Adaptive modells for simulering og visualisering

The Alesund city

Simple roads and houses

The Virtual Alesund region

Nice sea and nice mountains

Introduceing a game engine

The beginning of large terrains

The beginning of visual agents on 3D terrains

15 x 15 km model

The Virtual Møre region

The Landscape: GPS based 3D map

GPS-basert: +/- 10 cm

Simulation paradigm transform

From system dynamics, to individual dynamics

To a sum of individual models, based on free will

Virtual More as a generic concept:

- 1 Everything is Agent or landscapes
- 2 Adaptive Agents in landscapes
- 3 Social agents learning
- 4 Evolution agents learning
- 5 Time variant landscapes
- 6 Abstract landscapes as cost functions
- 7 Complex systems dynamics
- 8 Systems of systems

Needs a generic concept

Car agents in action

A car agent crossing an Norwegian fjord in a virtual tube tunnel Camera on care agents, moving in a tube tunnel

Car agents in a tube tunnel

A car as and agent, carries a camera

Car agents in a tube tunnel

A car as and agent, carries a camera

Ship agents in action

Optimum: speed, road map, energy, cost, safety, service, in real time

Ship agents in action

Ship agents computes the optimum Tanker-Tug position

Oil tanker is a risk at the Norwegian coastline

Case Stationary landscape

A general solution

Ship agents in action

Ship agents computes the optimum Tanker-Tug position

Case: Time variant landscape

A position dependent solution

The agent has to recompute an optimum solution

System of systems: A swarm of fish farms in Norwegian fjords

Horizontal integration: Fish farm agents and ship agents

System of systems: Fsh farm agents, fish agents and virus agents

Systems to landscape: Virus agents are related to an ocean system

Ocean currents is landscapes

Systems of landscapes: Active virus agents behave different at different temperatures and salinity in the sea

Temperatures are landscapes
Actice virus agents in landscape

Ocean currents is landscapes

System of systems: Virus swarm paints produces landscapes

What bringing life to agents?

As a summery

Generic Agents and landscapes concept

- 1 Everything is Agent or landscapes
- 2 Adaptive Agents in landscapes
- 3 Social agents learning
- 4 Evolution agents learning
- 5 Time variant landscapes
- 6 Abstract landscapes as cost functions
- 7 Complex systems dynamics
- 8 Systems of systems

Cost function landscapes
Oceanographic landscape
Climate landscape model
Tide model
Terrain landscape
Astronomy model

Future challanges

Next Virtual More:

- 1 Big agent swarms > 1 million
- 2 Parallel computing
- 3 Generic agent modeling
- 4 Time variant landscapes
- 5 Abstract landscapes as cost functions
- 6 Complex systems dynamics

3D terrain model challenges

- 1. Integration of large 3D terrain and sea maps
- 2. Position resolution and accuracy
- 3. Communication between 3D maps and agents
- 4. Computer capacity

The Map as a research arena

Needs a paradigm shift in simulation methods

From deterministic Newton dynamics

